173 research outputs found

    Single-channel speech separation with memory-enhanced recurrent neural networks

    Get PDF

    Music Information Retrieval: An Inspirational Guide to Transfer from Related Disciplines

    Get PDF
    The emerging field of Music Information Retrieval (MIR) has been influenced by neighboring domains in signal processing and machine learning, including automatic speech recognition, image processing and text information retrieval. In this contribution, we start with concrete examples for methodology transfer between speech and music processing, oriented on the building blocks of pattern recognition: preprocessing, feature extraction, and classification/decoding. We then assume a higher level viewpoint when describing sources of mutual inspiration derived from text and image information retrieval. We conclude that dealing with the peculiarities of music in MIR research has contributed to advancing the state-of-the-art in other fields, and that many future challenges in MIR are strikingly similar to those that other research areas have been facing

    Assessment of a novel biomechanical fracture model for distal radius fractures

    Get PDF
    Background: Distal radius fractures (DRF) are one of the most common fractures and often need surgical treatment, which has been validated through biomechanical tests. Currently a number of different fracture models are used, none of which resemble the in vivo fracture location. The aim of the study was to develop a new standardized fracture model for DRF (AO-23.A3) and compare its biomechanical behavior to the current gold standard. Methods: Variable angle locking volar plates (ADAPTIVE, Medartis) were mounted on 10 pairs of fresh-frozen radii. The osteotomy location was alternated within each pair (New: 10 mm wedge 8 mm / 12 mm proximal to the dorsal / volar apex of the articular surface; Gold standard: 10 mm wedge 20 mm proximal to the articular surface). Each specimen was tested in cyclic axial compression (increasing load by 100 N per cycle) until failure or -3 mm displacement. Parameters assessed were stiffness, displacement and dissipated work calculated for each cycle and ultimate load. Significance was tested using a linear mixed model and Wald test as well as t-tests. Results: 7 female and 3 male pairs of radii aged 74 +/- 9 years were tested. In most cases (7/10), the two groups showed similar mechanical behavior at low loads with increasing differences at increasing loads. Overall the novel fracture model showed a significant different biomechanical behavior than the gold standard model (p < 0,001). The average final loads resisted were significantly lower in the novel model (860 N +/- 232 N vs. 1250 N +/- 341 N; p = 0.001). Conclusion: The novel biomechanical fracture model for DRF more closely mimics the in vivo fracture site and shows a significantly different biomechanical behavior with increasing loads when compared to the current gold standard
    • …
    corecore